
Polarion Software®

E-BOOK

Europe, Middle-East, Africa: Polarion Software GmbH
Lautlinger Weg 3 — 70567 Stuttgart, GERMANY
Tel +49 711 489 9969 - 0
Fax +49 711 489 9969 - 20
www.polarion.com - info@polarion.com

Americas & Asia-Pacific: Polarion Software, Inc.
406 Tideway Dr. Alameda, CA 94501, USA
Tel +1 877 572 4005 (Toll free)
Fax +1 510 814 9983
www.polarion.com - info@polarion.com

Polarion goes
SCRUM

Polarion Software® www.polarion.com

Why Scrum?
Today many software companies are switching to Agile process-

es and, particularly to Scrum. Polarion Software also adopted

Scrum for several reasons, some specific to the company (size,

area of business, customers, etc.), and others quite general. This

paper will focus on the major factors that influenced us.

Perhaps the most important, reason was transparency. Before

Scrum, customers would want something, Product Management

then defined requirements, the development team committed to

fulfilling them, but the end results were not always as expected.

Delivery sometimes slipped, and if a release was rescheduled,

the risk was unclear and nobody could tell if new date was re-

ally realistic. Also, we needed to be able to respond quickly to

changes in market conditions and business strategy.

Scrum helps us understand what we need to do to build quality

software faster. We switched from defined and predictive de-

velopment to an empirical iterative incremental model - exactly

what Scrum is about.

Scrum’s Core Values
Let’s quickly review some of the important values of Scrum:

•	 Empiricism – facilitates management, development and

deployment of complex products

•	 Inspections and Adaptations, allowing people to check

and reach goals

•	 Full Transparency: people know the exact state of the

product. No guessing or relying on statements like “we’re

right on time”.

•	 Iterative development generates visible Increments of

functionality. Progress is measured not by time or money

spent, but by concrete results.

•	 Self-organization – people want to do their best, and will

consistently achieve this when there is room for them to

work in whatever way is most efficient for them, rather than

according to some dictum. Team Integrity is raised, enhanc-

ing productivity and motivation.

•	 Delivery – many great projects with very capable teams

have failed to deliver anything. Scrum helps teams mini-

mize this risks along the way. If a project is in fact going to

fail, it’s better to know this as soon as possible, kill it earlier,

and cut the losses.

Figure 1

Polarion Software® www.polarion.com

Unlike the old “waterfall” approach, Scrum recommends a high-

ly-adaptive way of development with short iterations producing

fully tangible results. Major benefits Polarion has realized from

Scrum development include:

•	 Shorter time to release to the market

•	 Transparency to management and customers

•	 Faster reaction to market needs and customer confidence

in Polarion’s development

•	 Simpler synchronization of distributed teams
•	 Easier releases – smaller stabilization sprints, less things

to test

•	 Faster feedback from the field
•	 Flexibility in prioritization, risk reduction

Also, some activities may be done in parallel. Specification of

one feature for the next iteration may happen in parallel with

implementation of another feature already specified in a previ-

ous iteration.

We have very short iterations of 2 weeks, with an iteration Plan-

ning Meeting at the beginning, and an iteration Assessment

Meeting the end of each iteration. This has proven optimal for

our several teams of 3 to 10 team members.

Figure 2 inputs for Product Backlog

Polarion ALM in Scrum Process
The remainder of this paper assumes you knows the basic functionality of Polarion, its terminology, and that you have at least some

experience with the administration interface.

We have configured Polarion ALM with 4 work item types to sup-

port our Scrum process:

•	 User Story: defines what functionality should be added,

updated or removed. It is formulated on business language,

has business value, and groups all relevant activities to-

gether.

Work Item Types

Iterative incremental Development

Polarion Software® www.polarion.com

•	 Improvement: specified some change(s) that will appear

in a future release... code improvements, Documentation

tasks, etc.
•	 Defect: I guess it’s clear what defect is :)

•	 Task: any activity consuming time and human resources,

but the results don’t appear directly in products − write

a test case, install a demo server, brainstorm discussion

about a feature, etc.

You’ll notice we don’t use Change Requests or Requirements –

those are covered by User Stories.

User Story Attributes
Attributes are reflected in Custom Fields we define for each work

item type. For User Stories we track:

•	 Source of request (whom to ask for clarifications)

•	 Backlog it belongs to (for sorting by priority exactly as

Backlog Owner wanted)

•	 Relationships between User Stories (People may require

similar or related things. We need to see those relationships

to simplify prioritization and grouping in the Product Back-

log)

•	 Product edition(s) that will have a feature

•	 Doc not required − flag if a User Story doesn’t require

documentation,

•	 Who requested the functionality (customer, prospect, etc.)

•	 Responsible developer – this may seem a contradiction

to a team-oriented approach but there’s a reason for it. We

found it useful to have a single person responsible for each

user story, who checks all the activities around it, and who

also leads the demos of the feature when the product is

ready.

•	 State – most important states are: “Open” (new, to do), “In

Progress” (there is active work on it), “Implemented” (imple-

mentation activities are finished) and “Done”.

•	 Initial Estimate – this is typically empirical data, which the

team agrees on. The Time Spent and Remaining Estimates

are calculated automatically by Polarion ALM (via inherited

fields) from linked child work items (Improvements, Defects,

Tasks).

•	 There are more attributes, specific to our development cy-

cles, but these are the main ones.

Improvement Attributes
As any implementation-related work item, an Improvement has

references to the build in which it was implemented (so testers

know which build o review), in which build it was reviewed by QA,

the branch it was committed to, the assignee, time estimates,

etc.

Prioritization of Improvement is typically done in the correspond-

ing User Story. All Improvements planned to a Sprint should be

linked to a User Story.

Defect Attributes
Attributes are similar to those of Improvement. Defects can be

taken in a sprint without linking to a User Story, and they may be

prioritized separately. Most important attributes include:

•	 Build (or Product version) where the problem was discov-

ered1

•	 Severity – the impact on customers or internal users

•	 Customer – if reported by a customer, it needs higher

priority. Also, the customer might need a patch, so we have

to track who should be provided with one.2

•	 Build in which the problem was resolved, branches, as-

signee, estimates and time spent, etc.

•	 Known Issue − defect is not resolved and should be men-

tioned in “Known Issues” list for the release.

Figure 3 – Work Item type configuration in Polarion ALM

Polarion Software® www.polarion.com

Task Attributes
This type of work item doesn’t have direct connection to Cus-

tomer or builds, therefore it doesn’t have any specific attributes.

This item also must be linked to a User Story to be selected for

a Sprint.

Linking of Work Items
Perhaps less important than work item types, still Polarion’s link-

ing capabilities help us in creating work breakdown structure,

and we benefit from the Planning features, which take in consid-

eration various types of links.

The most important link types are:

•	 Implements: the relationship of Improvements, Defects

and Tasks to the User Story. Until linked child items are re-

solved, the User Story is not considered Done.

•	 Depends on: meaning should be clear from the name – the

linked item must be processed first.

•	 Relates to: flags some relationship between work items;

just a hint for developers to review if there is anything rel-

evant or important in the linked item.

•	 Parent: links work items of the same type. Used for decom-

position of complex User Stories.

•	 Follows: Some work Items may be resolved in terms of the

request, but it turns out they need further work: usability

improvement, or a defect resulting from a fix of another.

Figure 4 Example of Work Breakdown Structure with our configuration

Polarion Software® www.polarion.com

Product Backlog
Typically the Product Owner writes up items for the Product Backlog in a Word or Excel document and then simply reshuffles them

according priority. This approach could easily cause all kinds of problems except for the fact that Polarion ALM enables efficient and

coordinated management of such artifacts.

Composing User Stories
Across all owners and stakeholders, we use 3 ways of compos-

ing User Stories:

•	 Through Polarion Web UI (“Create Work Item”)

•	 Through Email sent to the Polarion Maillet

•	 Through LiveDocs, Polarion’s exclusive office document

synchronization feature.

Regardless of the authoring method, created work items appear

in the Tracker and it’s relatively easy for all stakeholders to find

them using Polarion’s Query Builder. (Such a query might be

“type:userstory AND backlog:usability“). We often embed

queries into Wiki pages so stakeholders don’t have to formulate

queries. The one shown in Figure 6 below collects all backlogs

and displays the top items.

Prioritizing of User Stories
Here our process differs from typical Scrum. We have several

relatively independent stakeholders, all committed to common

goal, but still in pursuit their own targets (sound familiar?) There-

fore, each backlog is prioritized separately by the backlog Owner,

who defines the threshold of his or her items to flag those which

must appear in the Product Backlog and, ideally, should be dis-

cussed by the team.

Figure 5 A Stakeholder Backlog

Polarion Software® www.polarion.com

Our next step is to collect all the required items for the Product

Backlog. In Polarion ALM, it’s quite easy to create a Wiki page

which collects all the “top” (i.e. highest priority) items from vari-

ous backlogs – we just embed an instance of the {workitems}

macro, supplying correct query to fetch items from the backlogs

maintained in the Tracker.

Next, the Product Owner prioritizes the list.

We’ve defined a custom integer field “Prod-

uct Backlog Priority” (PBP)which the Product

Owner uses to sort the items accordingly.3

NOTE: A highly useful Polarion feature lets

you click “More” in a backlog table embed-

ded in a Wiki page, which opens the Work

Items table in the Tracker (a prime example of

Polarion’s integrated approach to tools).

Extracting from Stakeholder Backlogs to Product Backlog

Figure 6 Backlogs wiki page with embedded queries displaying top items different backlogs

Figure 7 Tracker items comprising the Product Backlog displayed in a Wiki page

Polarion Software® www.polarion.com

The PBP attribute also helps to track down if there were some

changes in a particular backlog that are not yet reflected in the

Common one. For example, a query that retrieves all the “impor-

tant” User Stories which don’t have the PBP field set:

We actively use Polarion’s Auto-assignment feature when creat-

ing new work items. This enables immediate assignment to a

Senior Developer, who will potentially lead the implementation.

This developer gets an email notification and sees the new item

assigned to him. This encourages early review of posted user

stories, provides read-filtered input for the planning meetings,

etc.

To simplify prioritization the “weight” or “initial estimate” of a

User Story is important, and automatic assignment helps to get

initial review and communication going even before the planning

meeting.

Also, we’ve configured the User Story work item type to ag-

gregate the values of Remaining Estimate fields from any child

items.

So by brainstorming, and reaching agreement at the Planning

Meeting, we identify an Initial Estimate value for each User Story.

Later however, when it is decomposed into to Improvements,

Tasks and Defects, we can often spot variations − that particular

work actually takes less time, or some additional task was not

anticipated, and was discovered after implementation began.

This data is extremely helpful for re-planning of any User Story

that was not finished to then next Sprint.

Additional tips from our development process

Tips
•	 Use Auto-assignment for new work items

•	 Configure the User Story work item type to aggregate the

values of Remaining Estimate fields from any child items

Figure 8 Wiki page section with query for potentially missing backlog entries

The Sprint: Meetings
Meetings are possibly the most important assets of Scrum.

Meetings are when the team commits to the Product Owner

on the amount of work (features) they will address over each

sprint. They discuss the progress in Daily Scrums and, finally,

access results at the last meeting. In this section and the next,

I’ll describe how we manage those meetings with the Polarion

development team.

The Planning Meeting
The goal of the Planning Meeting is to ensure that the team fully

understands the Product Backlog items, to commit the team to

implementing agreed-on items in upcoming sprint, and to en-

sure proper distribution of work among team members. During

the Planning Meeting dependencies between teams are also

identified to allow as much parallel work by the teams as pos-

sible, keeping the same focus for the iteration.

The planning entity for the sprint is the User Story. Each one has

a customer (the person who formulated the requirement) and an

owner – typically a Senior Developer, who then follows the User

Story through the full lifecycle.

Polarion Software® www.polarion.com

Typically the meeting is split to two parts. The first part involves

the Product Owner, and possibly other stakeholders, to ensure

common understanding of things to be done and commit the

team to some work items.

The second part is a rather internal meeting, where the team

decides who will implement what and splits the User Stories into

concrete Task and Improvement work items, validating capacity

of the team using the Polarion ALM’s LivePlan feature.4

Normally the User Stories in the Product Backlog have been

inspected and time-estimated by developers in advance. Team

members come prepared with questions, and perhaps concerns

about conflict with some agreements or principles, or inconsis-

tencies.

Out of the Planning Meeting come the User Stories selected for

the sprint, which becomes a Time Point assignment in Polarion

ALM. Results of the planning meeting are presented in a special

wiki page showing the agreed-upon Sprint Backlog:

Figure 9 Sprint Backlog in the integrated wiki

Slipping User Stories
We pay special attention to User Stories committed to a Sprint,

but not completed. It’s very natural to slip to the next Sprint be-

cause “it’s just taking a little longer”.

 One expects that as soon it’s moved to next Sprint, it will be

done on the first day. No! Experience shows that developers of-

ten leave unfinished User Stories to end of iteration because they

are easy to complete. But in reality - they get behind with other

tasks, and the slipped User Story remains unfinished and slips

even further into next Sprint.

A burning question in our Planning Meetings is: “If this User Story

was not addressed on last Sprint, how can we ensure that our

new commitment to this User Story will actually be realized?”

Polarion Software® www.polarion.com

Daily Scrums might be the most complicated part of Scrum be-

cause it requires changing perceptions. Too many of us inter-

pret meetings as means of getting tasks and reporting back, but

Scrum in general, and Daily Scrums particular, are about helping

the team to understand the current situation and to adjust if nec-

essary. Daily Scrums let team members to synchronize and all

can check whether sprint goals are still feasible and if not, take

decisions about what to change. No reports are made, and the

Scrum Master poses one simple question: “Are we sure we’ll

meet our Sprint Goals? Please show/explain how we do that!”

We use the Wiki Task Board to track progress of our sprint ex-

ecution. :5

Figure 10 Task Board in the wiki

Daily Scrums

Since our teams are small and we ad-

just daily Scrums to the lunch hour :).

When the most important questions are

answered the team may go to lunch and

discuss very low level details, if needed.

Polarion Software® www.polarion.com

Every iteration ends with an Assessment Meeting, where every

developer presents his/her work, either as a document (if the

task was to “specify” , etc.), or as a demo of the implementation

in the product. Each User Story should already have been tested

by QA.6

For the Assessment Meetings we check only those items marked

as “Done”. 7 As input for the Assessment meeting we use yet

another, more compressed, variant of the Task Board:

The end part of the Assessment Meeting is for introspection

and Lessons Learned. Ideally, it is a time to discuss how we

could optimize the process to implement more over a sprint, but

typically we find ourselves trying to identify things that were less

than perfect in our process and/or the implementation of some

feature implemented in the sprint. We also try to identify addi-

tional synchronization risks, problems of communication, involve

additional people to show them our dependency, which was not

fulfilled, and other subjects.

The Assessment Meeting

Figure 11 Task Board Summary on the Wiki

Polarion Software® www.polarion.com

The Sprint: Development
During a sprint, the development team continuously integrates

all changes, and updated versions of the product are installed

on the internal servers daily to prove stability and allow earlier

testing of new functionality by other people (testers, doc writers,

etc.)

Every developer should know his/her personal plan, which

matches the team plan set during the planning meeting. Devel-

opers track tasks via…

•	 Personal queries, like “assigned to me in current TimePoint”

•	 E-mail notifications of newly assigned work items

•	 The LivePlan chart and corresponding Wiki pages in our Po-

larion system

Burn-Down Charts
We configure the LivePlan view to show only entities assigned to

a TimePoint (usually the current sprint). It shows only leaves of

the work item work-break structure (i.e. it doesn’t render User

Stories on the plan if it has child items – improvements, tasks

or defects).

The LivePlan also reflects all non-working days (configured in

the global working calendar), and personal days off (configured

in developers’ personal working calendars). We get very clear

information whether or not the Sprint goals are still achievable

in the sprint time frame. The plan is ordered by priorities and se-

verities in the way developers have agreed upon in the Planning

Meeting (part 2) . Correspondingly, less important items should

be at the end of the plan. We also have Wiki pages that highlight

the progress of the team and remaining time:

Figure 12 Burn-down chart in the Live Plan

Polarion Software® www.polarion.com

Polarion’s Road Map view also gives a clear picture of the work items in tabular form:

Figure 13 Remaining time estimate in the Wiki

Figure 14 Polarion ALM Roadmap View

As implementation enters the “Implemented” state, it should be

taken over to QA and Documentation. There is automatic testing

through unit tests and so on, but every feature should pass QA

control to ensure consistency of the implementation, acceptable

levels of usability, that licensing and configuration for different

product lines is correctly implemented m and common user ac-

ceptance.

Typically QA and Documentation starts in parallel with devel-

opment – based on a specification document (normally a wiki

page). Final definition of the test cases and documentation typi-

cally happens at the point where implementation is really consid-

ered done, and first round of review (also by QA) is passed.8 The

User Story is populated with corresponding QA and Doc Tasks

(might be several of each) and the flags, set by the User Story

owner, that proper QA and documentation are done.

Testing and Documentation

Polarion Software® www.polarion.com

I hope you have gained some insights into how Scrum and Polarion ALM can work in con-

junction. In closing, let me suggest some possible next steps for you.

•	 If you are new to Polarion ALM, I highly recommend our Test Drive Server where you can

explore Polarion ALM as much as you like without any time limits. For information and to

create your user account, visit www.polarion.com/products/alm/demo.php.

•	 http://extensions.polarion.com – here you can find a constantly growing cadre of exten-

sions for Polarion, including examples of the Task Board I have referred to , workflow

functions, integrations with third-party solutions, project templates, and more.

•	 http://forums.polarion.com – here you can ask questions and discuss with other cus-

tomers your approach to Polarion.

Nick Entin is VP for Research & Development at Polarion Software. Nick

oversees the development of all Polarion requirements management,

application lifecycle management, and team collaboration software

products. He is a member of the Scrum Alliance and a Certified Scrum-

Master. You can read his profile at http://www.polarion.com/company/

people/index.php.

Conclusion

About the Author

Notes

Europe, Middle-East, Africa: Polarion Software GmbH
Lautlinger Weg 3 — 70567 Stuttgart, GERMANY
Tel +49 711 489 9969 - 0
Fax +49 711 489 9969 - 20
www.polarion.com - info@polarion.com

Americas & Asia-Pacific: Polarion Software, Inc.
406 Tideway Dr. Alameda, CA 94501, USA
Tel +1 877 572 4005 (Toll free)
Fax +1 510 814 9983
www.polarion.com - info@polarion.com

Did You Know?
Polarion Software’s integrated ALM

solutions manage requirements

engineering, team collaboration,

bug tracking, version control, CMMI

compliance, Agile process, and

more for many kinds of projects

with over 500,000 users world-

wide in broad range of industries.

Visit www.polarion.com for more

information.

PAGE 4
1 This is a string field, because it should allow values like “before version 3.2.1” or “after nightly build Apr 12th 2008”
2 Other work item types also have the Customer attribute, but it reflects who has requested the feature or proposed an Improvement, so it’s role is less important
than in the Defect type.

PAGE 7
3 You might also configure special “Hat” Product Owner. I personally use my own table settings to expose the PBP column, so I can easily reshuffle items.

PAGE 9
4 LivePlan reveals over/under- tasked people, potential bottlenecks, etc as soon as we plug in our tentative plan data.

PAGE 10
5 The Wiki Task Board is a free extension available on Polarion POP – the Polarion extensions portal at http://extensions.polarion.com.

PAGE 11
6 Documentation may not happen in parallel with each iteration. Reality is that documenting all things together is not always possible. We use special a User Story
“UNDONE: release X.Y.Z” to link all the things to be addressed in a Stabilization Sprint before a corresponding release.

7 From a workflow point of view, User Stories are marked as “Implemented” (programming is finished), “Done” (QAed, Documented), “Verified-Done” (when corre-
sponding stakeholder agrees that this functionality is really what was requested and expected). Those lacking documentation are still marked as “Done”, anticipat-

ing completion of documentation in a Stabilization Sprint.

PAGE 13
8 Otherwise unforeseen issues might cause implementation to vary from the original specification and lead to refinement or even change of the specification. Of
course the Product Owner or corresponding stakeholders are the ones who ultimately decide any change of specification.

